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Abstract

Many scientific, imaging, and geospatial applications produce large high-precision scalar fields
sampled on a regular grid. Lossless compression of such data is commonly done using predictive
coding, in which weighted combinations of previously coded samples known to both encoder and
decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective
transmission, the spatial pattern of the known neighbors is often irregular and varies from one
sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To
handle such situations and make the best use of available neighboring samples, we propose a local
spectral predictor that offers optimal prediction by tailoring the weights to each configuration of
known nearby samples. These weights may be precomputed and stored in a small lookup table. We
show that predictive coding using our spectral predictor improves compression for various sources
of high-precision data.

1. Introduction

The acquisition or computation of scientific data sets [1], high dynamic range images [2], and

geospatial data [3] usually requires a significant amount of effort and computing resources. Yet,

their exploitation is often hindered by the mismatch between the size of the files in which they

are stored and the available bandwidth for downloading or visualizing them. Although the loss of

precision resulting from controlled quantization or lossy compression may be acceptable for vi-

sualization purposes, lossless compression of integer or floating-point values is required in many

settings to guarantee the integrity of the data, e.g. when saving state in “restart dumps” for check-

pointing numerical simulations [1].

Whereas traditional image compression techniques are capable of lossless compression [4, 5],

they were developed for the media industry which usually deals with low-precision data and tol-

erates trading some accuracy for increased compression. In contrast, we focus on the lossless

compression of high-precision data sets represented for example as 32-bit integers or floating-point

numbers. The standard approach to lossless compression of such data is based on predictive cod-
ing [6–9], and several prediction schemes for structured data sets have been proposed [4, 10–13].

These prior schemes work best when the traversal over the data is simple, e.g. scanline order, so

that each sample can be predicted from a single spatial configuration (stencil) of nearby, previ-

ously coded samples. When more general traversals are desired or when a nontrivial subset of

samples is requested, the configuration of nearby known samples is often irregular and chang-

ing, which normally requires falling back on simpler predictors involving fewer samples. In this

paper, we address how to make predictions from such irregularly populated neighborhoods that



better take advantage of the known samples, and show that such predictors lead to improved

compression of high-precision data. Using Fourier analysis, we develop optimal spectral predic-
tors for small neighborhoods. While the derivation of the weights for these predictors is some-

what involved, the weights may be precomputed and stored in a small lookup table (available at

http://www.cc.gatech.edu/~lindstro/data/spectral/), and are straightforward

to use in a compression scheme.

The compression and streaming approach investigated here follow a simple paradigm: compute

the prediction pi, j of the scalar value fi, j as a weighted combination of previously processed samples

in the neighborhood Ni, j; compress the corrections, ci, j = fi, j − pi, j, e.g. using entropy coding; and

stream them. The paradigm leads to simplicity of implementation, small memory footprint, and

excellent compression.

Although our framework is general enough to handle larger neighborhoods and unstructured and

higher-dimensional data, we limit our attention in this paper to prediction within 3× 3 neighbor-

hoods. (While using larger neighborhoods may improve compression, precomputing and storing

the n(n−1)2n−1 weights for all possible combinations of known samples in an n-sample neighbor-

hood is impractical for large n.) When the predicted sample is at a corner of a full neighborhood

(all eight neighbors known), our spectral predictor reduces to the extrapolating bi-Lorenzian pre-

dictor; an extension of the previously proposed Lorenzo predictor suited for scanline transmission.

When the predicted sample is at the center of a full neighborhood, we obtain the radial interpolat-

ing predictor, which is four times more accurate than the bi-Lorenzian and is useful in hierarchical

transmission. We show that the spectral predictor leads to smaller correctors than other predictors

that use a 3× 3 neighborhood for lossless compression of high-precision floating-point or integer

data. We also explain how to select a priori the best of the nine possible 3×3 neighborhoods that

contain the sample to be predicted.

2. Extrapolating bi-Lorenzian predictor, L2

Before we derive our spectral predictor, we begin by considering the L1 Lorenzo predictor [13].

Let f be a one-dimensional function regularly sampled at {. . . , fi−1, fi, fi+1, . . .}, and let Δx be the

finite difference Δx
i = fi − fi−1. That is, Δx is an approximation of the differential ∂ f

∂x dx. Setting

Δx
i = 0, solving for fi, and substituting L1

i for fi, we have as 1D Lorenzo predictor L1
i = fi−1. The

Lorenzo predictor extends to 2D via composition of derivatives: Δxy
i, j = Δx

i, j −Δx
i, j−1 = fi−1, j−1 −

fi, j−1 − fi−1, j + fi, j. As the sampling rate of f increases, Δxy approaches ∂2 f
∂x∂y dxdy in the limit.

Setting Δxy
i, j = 0, we can now express the 2D Lorenzo predictor as

L1
i, j = fi, j−1 + fi−1, j − fi−1, j−1 (1)

Thus, in the limit, L1 correctly predicts all continuous functions f with ∂2 f
∂x∂y = 0. In the discrete

setting, L1 recovers linear polynomials, or equivalently bilinear polynomials without highest order

term xy. Figure 1(a) shows how the 2D Lorenzo predictor estimates the sample indicated by ‘?’ as

a weighted sum of three of its neighbors. We have successfully used L1 in higher dimensions to

predict regular grids [13].

It is natural to ask whether the Lorenzo predictor can be extended to higher-order polynomials

that have vanishing higher-order derivatives. To accomplish this, we take finite differences once
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Figure 1. Weights for several spectral predictors used in our experiments: (a) Lorenzo, (b) bi-
Lorenzian, (c) radial, (d) bilinear, (e) hybrid linear and radial, (f–h) full spectral.

more and obtain

Δxxyy
i, j = Δxy

i, j −Δxy
i+1, j −Δxy

i, j+1 +Δxy
i+1, j+1

= 2 fi, j−1 +2 fi−1, j +2 fi+1, j +2 fi, j+1 −4 fi, j − fi−1, j−1 − fi+1, j−1 − fi−1, j+1 − fi+1, j+1

where we define Δxxyy using central differences. Setting Δxxyy
i, j = 0 and solving for fi+1, j+1 we obtain

the bi-Lorenzian predictor

L2
i+1, j+1 = 2 fi, j−1 +2 fi−1, j +2 fi+1, j +2 fi, j+1 −4 fi, j − fi−1, j−1 − fi+1, j−1 − fi−1, j+1 (2)

In the limit, L2 reproduces functions f with ∂4 f
∂x2∂y2 = 0, and in the discrete setting interpolates

biquadratic polynomials without highest order term x2y2. Whereas Δxxyy relates to Δxy as Δxy relates

to f , L2 is usually not the successive application of L1, i.e. in general L2
i, j �= L1

i, j−1 +L1
i−1, j−L1

i−1, j−1.

Instead, L2 may be derived by setting to zero the L1 correction of the L1 corrections at (i, j). The

L2 weights are shown in Figure 1(b).

The L1 predictor has been widely used in the image and geometry compression communities [4–

6, 13]. We are, however, not aware of its extension L2 having been used for compression of 2D and

higher-dimensional data.

3. Interpolating radial predictor, R

In the previous section we presented an extrapolating predictor, L2, for a corner fi+1, j+1 of a 3×3

neighborhood of samples. This predictor arose from the constraint Δxxyy
i, j = 0, a central difference

evaluated at the center sample of this neighborhood. A more effective predictor is obtained by

solving this equation for the function value at the center sample fi, j (the “face sample”), which

results in the radial interpolating predictor

Ri, j =
1

4

(
2 fi, j−1 +2 fi−1, j +2 fi+1, j +2 fi, j+1 − fi−1, j−1 − fi+1, j−1 − fi−1, j+1 − fi+1, j+1

)
(3)

We use the term “radial” to describe this predictor because its weights are radially dependent on the

distance to neighboring samples (Figure 1(c)). The prediction Ri, j is 2E−C, where E is the mean of

the four edge neighbors { fi±1, j, fi, j±1} and C is the mean of the four corner neighbors { fi±1, j±1}.

Ri, j also equals the mean of the four possible L1 predictions of fi, j.

R has the same predictive power as L2, i.e. it reproduces biquadratics with no x2y2 term, but

typically yields better predictions due to the symmetric configuration of its neighborhood. Using

Taylor expansion of f one can show that the prediction error of L2 is ∂4 f
∂x2∂y2 (plus higher order terms),

which is four times larger than the prediction error for R. Note that to use R, we either must know

all eight surrounding neighbors or must estimate them via alternative predictors.
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Figure 2. Basis functions for the 2D discrete cosine transform (not normalized).

4. Spectral predictor, S

Our spectral predictor S generalizes L2 and R to all possible configurations of 0 to 8 known

samples and locations of the predicted sample in a 3× 3 neighborhood. As in image compression

methods based on discrete wavelet [14] and cosine transforms [15], we capitalize on the fact that the

signal power is often heavily skewed towards low frequencies. In frequency transforms, this results

in small, compressible high-frequency detail coefficients, whereas in predictive coding “smooth”

interpolants recover most of the low-frequency response, leading to small correctors for the missing

high-frequency content.

In this section, we design as-smooth-as-possible interpolants for irregular sample configurations.

We seek to eliminate or, when not possible, to minimize high-frequency responses in the interpolant.

The resulting predictors and their sets of weights can be stored in a lookup table indexed by the mask

of known and unknown values and the location of the predicted sample.

We build upon the work by Isenburg et al. [16], who use the Fourier transform to predict the

geometry of n-sided polygons to be “as regular as possible” given m < n known vertices. They

express the vertex coordinates of the polygon in the complex plane, apply the discrete Fourier

transform (DFT) to this n-vector of consecutive vertex coordinates, set the highest n−m frequencies

to zero, and compute the inverse transform to obtain the complex coordinates of the predicted

vertices. Because the Fourier transform is linear, the unknown vertices can be expressed as a linear

combination of the known vertices. By working out the mathematics of the forward and inverse

Fourier transforms, one can a priori establish a set of weights for a given configuration (m,n) of

known and unknown number of vertices (i.e. the weights are not dependent on the geometry of

the known samples). Because Fourier frequencies come in pairs, this approach works well when

m is odd as then the resulting weights are guaranteed to be real. One can show that the discrete

cosine transform (DCT) can instead be used when m is even. Lifting the DFT to higher dimensions,

Isenburg et al. further showed that the L1 predictor from Section 2 is in the spectral sense the optimal

predictor (i.e. smoothest interpolant) for hypercube-like neighborhoods with one unknown sample.

We begin by extending the general approach of Isenburg et al. to 3× 3 neighborhoods to re-

derive the bi-Lorenzian and radial predictors and show that they are optimal. We will make use of

the two-dimensional (orthonormal) discrete cosine basis

{u(x)u(y), s(x)u(y), u(x)s(y), s(x)s(y), c(x)u(y), u(x)c(y), s(x)c(y), c(x)s(y), c(x)c(y)}
where x and y vary over the domain {−1,0,+1} of our 3×3 neighborhood, and where

u(x) =
√

1
3
, s(x) =

√
1
3

sin
(

1
3
πx

)
, c(x) =

√
2
3

cos
(

2
3
πx

)
The cosine basis is shown un-normalized in Figure 2. We unfold the 3× 3 matrix into a single

9-dimensional vector b = [ fi−1, j−1 fi, j−1 fi+1, j−1 · · · fi+1, j+1]
T of sample values, and write

the cosine basis as a 9× 9 orthogonal matrix B, where the columns of B are the basis functions.

Then the forward discrete cosine transform is simply x = BT b, with x being the DCT coefficients in

order of increasing frequency.
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Figure 3. Example mask matrix M, interpolation matrix P, and predictor weights.

To extend the ideas of Isenburg et al. from 1D to 2D, we must rank the basis functions by increas-

ing frequency. The cosine basis formulation gives us pairs of frequencies (νx,νy) for the horizontal

and vertical direction, which must be consolidated into single frequencies. We approach this by

deriving the cosine basis through eigenanalysis of the symmetric combinatorial graph Laplacian L
(also called the Kirchoff matrix [17])

li j =

⎧⎨
⎩

deg(i)
−1

0

if i = j
if i and j are adjacent

otherwise

(4)

where we consider the graph formed by the 3×3 neighborhood in isolation, with vertical and hori-

zontal edges between adjacent samples. Here deg(i) denotes the degree or number of neighbors of

a sample i, e.g. deg(i) is 2 for corner samples, 3 for edge samples, and 4 for face samples. As noted

by Taubin [18], the eigenbasis of the normalized (asymmetric) Laplacian coincides with the Fourier

basis, and the eigenvalues {λi} of L correspond to frequencies. The above un-normalized (sym-

metric, positive semidefinite) Laplacian L has real non-negative eigenvalues {0,1,1,2,3,3,4,4,6}
and the cosine basis as eigenbasis. We will use Bλ to denote the eigenvector (i.e. basis function)

with corresponding eigenvalue λ, and Bx
λ and By

λ to distinguish pairs of eigenvectors with equal

eigenvalues (Figure 2).

Our formulation shows that there is a unique highest frequency λ = 6 with associated basis

function B6. Given the eight known samples in the bi-Lorenzian and radial predictors, similarly

to Isenburg et al., we set the highest frequency response x6 to zero and solve for the unknown

sample as a linear combination of the m = 8 known samples, which results in the weights given in

Equations 2 and 3 for corner and center predictions. When m < 8, a similar strategy is possible by

zeroing 9−m of the highest frequencies. However, we may need to resolve two issues: (1) The

9−m first basis functions may not form a basis for the set of known samples, e.g. {B0,B
x
1,B

y
1} is

not a basis for b = [ fi−1, j−1 fi, j−1 fi+1, j−1 0 · · · 0]T . (2) In situations when only one of

Bx
λ and By

λ is needed (e.g. when exactly two samples are known, as in Figure 3), we may reduce the

total frequency response by choosing a linear combination of Bx
λ and By

λ.

Let M be an m× n mask matrix that extracts the m known samples Mb from b, i.e. each row

of M has a single one entry and remaining zeros. We wish to solve the underconstrained system

MBx = Mb for x with as many high frequencies of x zeroed as possible. This can be done via

linearly constrained least-squares methods, which involves symbolic inversion of an (m + n)×
(m + n) matrix. We show here how to accomplish the same goal via inversion of a smaller m×m
matrix.

We first must find an m-dimensional basis for Mb by selecting from or combining the n > m
column vectors MB; any excluded vector from MB will implicitly have its corresponding frequency

response zeroed. Our approach is to incrementally construct an n×m interpolation matrix P that

linearly combines vectors from MB such that MBPy = Mb is a fully constrained system of m equa-

tions, with Py = x. We achieve this by adding to P columns that select basis functions from MB
in order of increasing frequency λ. If a basis function projected onto the space of known samples

is redundant (linearly dependent) with respect to the partially constructed basis, we exclude it and

consider the next basis function. When we encounter an eigenspace, i.e. two basis functions with
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Figure 4. Predictor quality as a function of number of known points in the 3× 3 neighborhood. The
shaded area indicates the range between best and worst spectral prediction.

the same eigenvalue, one of three situations arises: (1) The whole eigenspace is redundant, and we

exclude it. (2) The whole eigenspace is nonredundant, and we include it. (3) The eigenspace is

partially redundant, in which case we first “rotate” the eigenspace by an angle θ to make one of the

rotated and projected basis functions redundant. (Note that any rotation of an eigenspace preserves

eigenvalues and orthogonality with the rest of the basis.) This leaves a nonredundant basis func-

tion Bθ
λ = cos(θ)Bx

λ + sin(θ)By
λ and we add to P a column that has cos(θ) and sin(θ) in the rows

corresponding to Bx
λ and By

λ. The effect of this rotation is to “align” the basis function with the

spatial configuration of known samples. One can show that this rotation leads to the minimal total

frequency response ||x||.
We may now compute x = P(MBP)−1Mb using matrix inversion. We are, however, not interested

in the frequency response x but in the weights of the known samples Mb. Hence we apply the inverse

DCT to x and compute Bx = Wb, where W is the n×n weight matrix W = BP(MBP)−1M, which

is then used to predict unknown samples in b from known ones.

We have implemented this method symbolically in Mathematica and computed exact weights

W for all neighborhood configurations, resulting in 41 unique weights in the range [−4,+4] that

are predominantly integers and otherwise rationals. The complete list of weights can be found

at http://www.cc.gatech.edu/~lindstro/data/spectral/. Note that our weights

always add to unity, making our predictor affine invariant.

4.1. Choosing a neighborhood

Via translation we can form nine 3× 3 neighborhoods around each predicted sample p. De-

pending on the configuration of known samples it is not immediately clear which neighborhood to

predict from. We propose training the compressor on the given data set: each of the 9× 28 pre-

dictors is exercised on each sample and receives a ranking based on the mean error it makes. This

short ranking is transmitted before compression begins and determines the choice of predictor. In

Figure 4 we show using random sampling of two data sets that our approach improves upon several

alternatives that we have explored, including the neighborhood centered at p and the mean or the

median of all nine predictions. For calibration, we also report the results for the best (lowest resid-

ual) of the nine neighborhoods (which unfortunately is not available to the decoder), as well as the

mean and median of constant (single-value) and L1 prediction.



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Viscocity Pressure Velocity Diffusivity Vorticity

no
rm

al
iz

ed
 m

ea
n 

pr
ed

ic
tio

n 
er

ro
r

Paeth Median L1 L2

(a) Scanline transmission

0

2

4

6

8

10

12

14

16

18

20

Viscocity Velocity Diffusivity Vorticity

m
ea

n 
co

rr
ec

to
r l

en
gt

h 
(b

its
)

Bilinear Hybrid Spectral

(b) Progressive refinement

0

1

2

3

4

5

6

7

1000m 1001m 1003m

m
ea

n 
co

rr
ec

to
r l

en
gt

h 
(b

its
)

Median Mean Spectral

(c) Isocontouring

Figure 5. Prediction results for three different applications.

5. Applications of spectral prediction

Our spectral predictor is particularly useful in applications where standard compression tech-

niques, e.g. based on wavelets, are not practical, such as for encoding data sets with irregular

domains due to manual or automatic extraction, inpainting, selective updates, adaptive sampling,

or range queries that extract those samples whose values fall within an interval. Irregular sample

configurations also arise when the data is traversed in other than scanline order, or in mesh com-

pression, where the domain connectivity is inherently irregular. For lack of space, we here consider

only a few of these applications.

We evaluate predictor performance in terms of the number of significant corrector bits, which is

the dominating cost in predictive coders for high-precision data [7, 8], including our own [9]. For

floating-point data, we compute an integer corrector that measures the number of distinct floating-

point values between the actual and predicted value (see [9]).

5.1. Scanline transmission

The most straightforward method to compress regularly gridded data is to make a scanline traver-

sal, e.g. row-by-row from bottom to top and from left to right within each row. We here compare

our bi-Lorenzian L2 predictor with other scanline predictors proposed for image compression: the

Paeth predictor [12] used in the PNG image format [5], the median predictor used in JPEG-LS [4],

and the L1 Lorenzo predictor [13] used by Lindstrom and Isenburg [9]. All except L2 predict a

sample from the same set of three neighbors (Figure 1(a)).

In order to apply L2 in a scanline traversal, two rows of previously coded samples must be

maintained (Figure 6(a)). To bootstrap the predictor, one may use lower-dimensional Lorenzo

prediction to first recover domain boundaries. Alternatively, one may use the spectral predictor for

partially known neighborhoods described in Section 4.

Figure 5(a) shows the results of predicting multiple 2D slices of the single-precision floating-

point scalar fields shown in Figure 7 obtained from a fluid dynamics simulation [1]. On high-

precision data like this, L2 often offers substantially better prediction than predictors that use smaller

stencils. The benefit of a larger stencil comes at the expense of higher sensitivity to quantization,

however, due to accumulation of per-sample errors and larger (in magnitude) weights. Analysis

shows that the prediction error due to quantization is three times larger for L2 than for L1. Hence

L2 generally performs worse than L1 on low-precision data such as 8-bit images.
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Figure 6. (a) L2 footprint (circles) maintained during scanline traversal. (b) Coarse-resolution (solid)
and fine-resolution (hollow) processed samples in a hierarchical traversal. Within each level of reso-
lution, scanline traversal is used, resulting in three predictor stencils: (c) face, (d) vertical edge, and
(e) horizontal edge sample.

5.2. Progressive refinement

Often, data sets are transmitted progressively, doubling the resolution in x and y after each refine-

ment. The missing values within a refinement level may be transmitted in scanline order, as shown

in Figure 6(b), which results in three 3× 3 neighborhood configurations from which samples are

predicted (Figure 6(b–d)).

We consider three predictors for the face sample (Figure 6(c)): bilinear interpolation B of corner

samples (Figure 1(d)), spectral prediction S f (Figure 1(f)), and a hybrid predictor H (Figure 1(e))

that first linearly interpolates the unknown neighbors at the vertical and horizontal edges from their

immediate neighbors to fill the neighborhood and then predicts the face point using radial prediction

R. Note that both B and H are instances of spectral prediction that simply ignore some of the known

neighbors. For the edge points, B and H resort to linear interpolation of corner points for prediction

(since no other reasonable non-spectral predictor is available), while our spectral predictor is able

to make use of all decoded samples (Figures 1(g) and 1(h)).

Figure 5(b) illustrates the advantage of using all known neighboring samples in the prediction.

S f offers in all cases superior prediction over B and H, leading in one case to as much as a 4:1

improvement in compression. Note that one may choose a different traversal order within each

level. In fact, our experiments show that transmitting the missing edge samples first and then the

face samples further improves compression, in part because the face samples may be predicted

using the radial predictor with fully known (not simply estimated) neighborhoods.

5.3. Isocontouring

In many scientific, engineering, and medical applications, regularly sampled volumetric scalar

fields are visualized in terms of isosurfaces. For instance, a remote viewer may wish to see the

isosurface S(t) formed by all points at temperature t or to explore the family S(T ) of isosurfaces

with temperatures in a range T = [tmin, tmax]. Instead of transmitting the geometry of S(t) or some

compressed form of its animation, it is often more effective to transmit the minimal subset of scalar

values needed to reconstruct the single isosurface S(t) or family of isosurfaces S(T ) [19]. To satisfy

this query, one needs to transmit not only the samples with values in T , but also some of their

neighbors to obtain a complete “scaffold” around the surface. In a scenario where the the remote

user later decides to extend T to a larger interval, compression and incremental transmission of

the subset of additional samples would often be preferable over complete retransmission. For both

initial and incremental transmission, it is not obvious how to predict the irregular subset of sample

values using traditional means.

Because we are only interested here in illustrating the benefits of the spectral predictor, we will

not discuss the transmission order nor how to encode the mask that identifies the missing samples.



(a) Density (b) Pressure (c) Diffusivity (d) Viscocity

Figure 7. Interval-volume renderings of some of the 3D scalar fields used in our experiments.

We focus on the prediction of the missing values and report experiments of extracting isolines in

2D from the Puget Sound 16-bit terrain surface (available at http://www.cc.gatech.edu/
projects/large_models/ps.html). We first extracted an isocontour at 1000m elevation

and predicted all necessary samples, then incrementally transmitted missing values for isocontours

at 1001m and 1003m, resulting in an average number of known neighbors of 5.13, 5.42, and 5.41,

respectively. Since samples are often not available for predictors like L1 to be applied, we compare

our spectral predictor with predictions based on the mean and median sample value in a 3 × 3

neighborhood centered on the predicted sample. We observed consistent reduction in corrector bit

length (13–22%) using the spectral predictor, even for this lower-precision data set (Figure 5(c)).

6. Conclusions

We propose two new predictors, the bi-Lorenzian L2 and the radial R, which predict the value

of a sample f from eight values in a 3× 3 neighborhood of which f is the corner (for L2) or the

center (for R). More importantly, we propose the spectral predictor S, which extends L2 and R to all

configurations of 0 to 8 known samples and locations of f in a 3×3 neighborhood. We argue that S
is the best predictor from a 3×3 neighborhood, provide a strategy for selecting the most promising

neighborhood that contains f , and demonstrate the benefits of S over competing predictors in three

simple applications.

While applied only to 3× 3 neighborhoods in 2D regular grids here, our framework, which is

based on the eigenstructure of the combinatorial graph Laplacian, easily generalizes to higher di-

mensions and to irregular grids. One immediate application we envision is geometry prediction for

polygonal and polyhedral meshes. In the more general setting, multiple and larger neighborhoods

may arise, possibly leading to very large weight lookup tables. In order to reduce memory require-

ments, symmetry, non-uniqueness of weights and weight combinations, and unity constraints can

be exploited, however having a more efficient procedure for on-demand computation of weights

than symbolic or even numerical matrix inversion is clearly desirable.
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